Category:Definitions/Möbius Transformations
Jump to navigation
Jump to search
This category contains definitions related to Möbius Transformations.
Related results can be found in Category:Möbius Transformations.
A Möbius transformation is a mapping $f: \overline \C \to \overline \C$ of the form:
- $\map f z = \dfrac {a z + b} {c z + d}$
where:
- $\overline \C$ denotes the extended complex plane
- $a, b, c, d \in \C$ such that $a d - b c \ne 0$
We define:
- $\map f {-\dfrac d c} = \infty$
if $c \ne 0$, and:
- $\map f \infty = \begin {cases} \dfrac a c & : c \ne 0 \\ \infty & : c = 0 \end {cases}$
Pages in category "Definitions/Möbius Transformations"
The following 10 pages are in this category, out of 10 total.