Category:Definitions/Matrix Products
This category contains definitions related to Matrix Products.
Related results can be found in Category:Matrix Products.
Matrix Product (Conventional)
Let $\struct {R, +, \circ}$ be a ring.
Let $\mathbf A = \sqbrk a_{m n}$ be an $m \times n$ matrix over $R$.
Let $\mathbf B = \sqbrk b_{n p}$ be an $n \times p$ matrix over $R$.
Then the matrix product of $\mathbf A$ and $\mathbf B$ is written $\mathbf A \mathbf B$ and is defined as follows.
Let $\mathbf A \mathbf B = \mathbf C = \sqbrk c_{m p}$.
Then:
- $\ds \forall i \in \closedint 1 m, j \in \closedint 1 p: c_{i j} = \sum_{k \mathop = 1}^n a_{i k} \circ b_{k j}$
Thus $\sqbrk c_{m p}$ is the $m \times p$ matrix where each entry $c_{i j}$ is built by forming the (ring) product of each entry in the $i$'th row of $\mathbf A$ with the corresponding entry in the $j$'th column of $\mathbf B$ and adding up all those products.
This operation is called matrix multiplication, and $\mathbf C$ is the matrix product of $\mathbf A$ with $\mathbf B$.
Matrix Scalar Product
Let $\GF$ denote one of the standard number systems.
Let $\map \MM {m, n}$ be the $m \times n$ matrix space over $\GF$.
Let $\mathbf A = \sqbrk a_{m n} \in \map \MM {m, n}$.
Let $\lambda \in \GF$ be any element of $\Bbb F$.
The operation of scalar multiplication of $\mathbf A$ by $\lambda$ is defined as follows.
Let $\lambda \mathbf A = \mathbf C$.
Then:
- $\forall i \in \closedint 1 m, j \in \closedint 1 n: c_{i j} = \lambda a_{i j}$
$\lambda \mathbf A$ is the scalar product of $\lambda$ and $\mathbf A$.
Thus $\mathbf C = \sqbrk c_{m n}$ is the $m \times n$ matrix composed of the product of $\lambda$ with the corresponding elements of $\mathbf A$.
Commutative Matrix Product
Definition:Commutative Matrix Product
Kronecker Product
Also known as matrix direct product:
Let $\mathbf A = \sqbrk a_{m n}$ and $\mathbf B = \sqbrk b_{p q}$ be matrices.
The Kronecker product of $\mathbf A$ and $\mathbf B$ is denoted $\mathbf A \otimes \mathbf B$ and is defined as the block matrix:
- $\mathbf A \otimes \mathbf B = \begin{bmatrix} a_{11} \mathbf B & a_{12} \mathbf B & \cdots & a_{1n} \mathbf B \\ a_{21} \mathbf B & a_{22} \mathbf B & \cdots & a_{2n} \mathbf B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} \mathbf B & a_{m2} \mathbf B & \cdots & a_{mn} \mathbf B \end{bmatrix}$
Writing this out in full:
- $\mathbf A \otimes \mathbf B = \begin{bmatrix} a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{11} b_{1q} & \cdots & \cdots & a_{1n} b_{11} & a_{1n} b_{12} & \cdots & a_{1n} b_{1q} \\ a_{11} b_{21} & a_{11} b_{22} & \cdots & a_{11} b_{2q} & \cdots & \cdots & a_{1n} b_{21} & a_{1n} b_{22} & \cdots & a_{1n} b_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ a_{11} b_{p1} & a_{11} b_{p2} & \cdots & a_{11} b_{pq} & \cdots & \cdots & a_{1n} b_{p1} & a_{1n} b_{p2} & \cdots & a_{1n} b_{pq} \\ \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\ a_{m1} b_{11} & a_{m1} b_{12} & \cdots & a_{m1} b_{1q} & \cdots & \cdots & a_{mn} b_{11} & a_{mn} b_{12} & \cdots & a_{mn} b_{1q} \\ a_{m1} b_{21} & a_{m1} b_{22} & \cdots & a_{m1} b_{2q} & \cdots & \cdots & a_{mn} b_{21} & a_{mn} b_{22} & \cdots & a_{mn} b_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ a_{m1} b_{p1} & a_{m1} b_{p2} & \cdots & a_{m1} b_{pq} & \cdots & \cdots & a_{mn} b_{p1} & a_{mn} b_{p2} & \cdots & a_{mn} b_{pq} \end{bmatrix}$
Thus, if:
then $\mathbf A \otimes \mathbf B$ is a matrix with order $m p \times n q$.
Hadamard Product
Also known as Matrix Entrywise Product or Schur Product:
Let $\mathbf A = \sqbrk a_{m n}$ and $\mathbf B = \sqbrk b_{m n}$ be $m \times n$ matrices over a ring $\struct {R, +, \times}$.
The Hadamard product of $\mathbf A$ and $\mathbf B$ is written $\mathbf A \circ \mathbf B$ and is defined as follows:
- $\mathbf A \circ \mathbf B := \mathbf C = \sqbrk c_{m n}$
where:
- $\forall i \in \closedint 1 m, j \in \closedint 1 n: c_{i j} = a_{i j} \times b_{i j}$
Frobenius Inner Product
Definition:Frobenius Inner Product
Cracovian
Subcategories
This category has the following 4 subcategories, out of 4 total.
Pages in category "Definitions/Matrix Products"
The following 5 pages are in this category, out of 5 total.