Definition:Kronecker Product
Jump to navigation
Jump to search
Definition
Let $\mathbf A = \sqbrk a_{m n}$ and $\mathbf B = \sqbrk b_{p q}$ be matrices.
The Kronecker product of $\mathbf A$ and $\mathbf B$ is denoted $\mathbf A \otimes \mathbf B$ and is defined as the block matrix:
- $\mathbf A \otimes \mathbf B = \begin{bmatrix} a_{11} \mathbf B & a_{12} \mathbf B & \cdots & a_{1n} \mathbf B \\ a_{21} \mathbf B & a_{22} \mathbf B & \cdots & a_{2n} \mathbf B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} \mathbf B & a_{m2} \mathbf B & \cdots & a_{mn} \mathbf B \end{bmatrix}$
Writing this out in full:
- $\mathbf A \otimes \mathbf B = \begin{bmatrix} a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{11} b_{1q} & \cdots & \cdots & a_{1n} b_{11} & a_{1n} b_{12} & \cdots & a_{1n} b_{1q} \\ a_{11} b_{21} & a_{11} b_{22} & \cdots & a_{11} b_{2q} & \cdots & \cdots & a_{1n} b_{21} & a_{1n} b_{22} & \cdots & a_{1n} b_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ a_{11} b_{p1} & a_{11} b_{p2} & \cdots & a_{11} b_{pq} & \cdots & \cdots & a_{1n} b_{p1} & a_{1n} b_{p2} & \cdots & a_{1n} b_{pq} \\ \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\ a_{m1} b_{11} & a_{m1} b_{12} & \cdots & a_{m1} b_{1q} & \cdots & \cdots & a_{mn} b_{11} & a_{mn} b_{12} & \cdots & a_{mn} b_{1q} \\ a_{m1} b_{21} & a_{m1} b_{22} & \cdots & a_{m1} b_{2q} & \cdots & \cdots & a_{mn} b_{21} & a_{mn} b_{22} & \cdots & a_{mn} b_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ a_{m1} b_{p1} & a_{m1} b_{p2} & \cdots & a_{m1} b_{pq} & \cdots & \cdots & a_{mn} b_{p1} & a_{mn} b_{p2} & \cdots & a_{mn} b_{pq} \end{bmatrix}$
Thus, if:
then $\mathbf A \otimes \mathbf B$ is a matrix with order $m p \times n q$.
Also known as
The Kronecker product is also known as the matrix direct product.
Also see
- Results about Kronecker product can be found here.
Source of Name
This entry was named for Leopold Kronecker.
Sources
![]() | There are no source works cited for this page. Source citations are highly desirable, and mandatory for all definition pages. Definition pages whose content is wholly or partly unsourced are in danger of having such content deleted. To discuss this page in more detail, feel free to use the talk page. |