Category:Definitions/Method of Least Squares

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Method of Least Squares.
Related results can be found in Category:Method of Least Squares.


Approximation Theory

Let there be a set of points $\set {\tuple {x_k, y_k}: k \in \set {1, 2, \ldots, n} }$ plotted on a Cartesian $x y$ plane which correspond to measurements of a physical system.

Let it be required that a straight line is to be fitted to the points.


The method of least squares is a technique of producing a straight line of the form $y = m x + c$ such that:

the points $\set {\tuple {x_k', y_k'}: k \in \set {1, 2, \ldots, n} }$ are on the line $y = m x + c$
$\forall k \in \set {1, 2, \ldots, n}: x_k' = x_k$
$\ds \sum_n \paren {y_k' - y_k}^2$ is minimised.


Statistics

The method of least squares, in the context of statistics, is a method to estimate parameters, particularly in regression models.

Pages in category "Definitions/Method of Least Squares"

The following 3 pages are in this category, out of 3 total.