Category:Definitions/Naive Set Theory

From ProofWiki
Jump to: navigation, search

This category contains definitions related to Naive Set Theory.
Related results can be found in Category:Naive Set Theory.

Naïve set theory, in contrast with axiomatic set theory, is an approach to set theory which assumes the existence of a universal set, despite the fact that such an assumption leads to paradoxes.

A popular alternative (and inaccurate) definition describes this as a

non-formalized definition of set theory which describes sets and the relations between them using natural language.

However, the discipline is founded upon quite as rigid a set of axioms, namely, those of propositional and predicate logic.

Pages in category "Definitions/Naive Set Theory"

This category contains only the following page.