Category:Definitions/Normality in Groups

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Normality in Groups.
Related results can be found in Category:Normality in Groups.


Let $G$ be a group.

Let $N$ be a subgroup of $G$.


$N$ is a normal subgroup of $G$ if and only if:


Definition 1

$\forall g \in G: g \circ N = N \circ g$


Definition 2

Every right coset of $N$ in $G$ is a left coset

that is:

The right coset space of $N$ in $G$ equals its left coset space.


Definition 3

\(\ds \forall g \in G: \, \) \(\ds g \circ N \circ g^{-1}\) \(\subseteq\) \(\ds N\)
\(\ds \forall g \in G: \, \) \(\ds g^{-1} \circ N \circ g\) \(\subseteq\) \(\ds N\)


Definition 4

\(\ds \forall g \in G: \, \) \(\ds N\) \(\subseteq\) \(\ds g \circ N \circ g^{-1}\)
\(\ds \forall g \in G: \, \) \(\ds N\) \(\subseteq\) \(\ds g^{-1} \circ N \circ g\)


Definition 5

\(\ds \forall g \in G: \, \) \(\ds N\) \(=\) \(\ds g \circ N \circ g^{-1}\)
\(\ds \forall g \in G: \, \) \(\ds N\) \(=\) \(\ds g^{-1} \circ N \circ g\)


Definition 6

\(\ds \forall g \in G: \, \) \(\ds \leftparen {n \in N}\) \(\iff\) \(\ds \rightparen {g \circ n \circ g^{-1} \in N}\)
\(\ds \forall g \in G: \, \) \(\ds \leftparen {n \in N}\) \(\iff\) \(\ds \rightparen {g^{-1} \circ n \circ g \in N}\)


Definition 7

$N$ is a normal subset of $G$.