Category:Definitions/Periodic Functions
Jump to navigation
Jump to search
This category contains definitions related to Periodic Functions.
Related results can be found in Category:Periodic Functions.
Periodic Real Function
Let $f: \R \to \R$ be a real function.
Then $f$ is periodic if and only if:
- $\exists L \in \R_{\ne 0}: \forall x \in \R: \map f x = \map f {x + L}$
Periodic Complex Function
Let $f: \C \to \C$ be a complex function.
Then $f$ is periodic if and only if:
- $\exists L \in \C_{\ne 0}: \forall x \in \C: \map f x = \map f {x + L}$
Subcategories
This category has only the following subcategory.
E
Pages in category "Definitions/Periodic Functions"
The following 13 pages are in this category, out of 13 total.
P
- Definition:Period of Periodic Real Function
- Definition:Period of Periodic Real Function/Also defined as
- Definition:Period of Periodic Real Function/Also known as
- Definition:Periodic Element
- Definition:Periodic Function
- Definition:Periodic Function/Complex
- Definition:Periodic Function/Periodic Element
- Definition:Periodic Function/Real
- Definition:Periodic Real Function
- Definition:Periodic Real Function/Frequency
- Definition:Periodic Real Function/Period