Category:Definitions/Sheaf Theory

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Sheaf Theory.
Related results can be found in Category:Sheaf Theory.


A $\mathbf C$-valued sheaf $\FF$ on $T$ is a $\mathbf C$-valued presheaf such that for all open $U \subseteq S$ and all open covers $\sequence {U_i} _{i \mathop \in I}$ of $U$:

$\struct {\map \FF U, \paren {\operatorname {res}_{U_i}^U}_{i \mathop \in I} }$

is the limit of the restriction of $\FF$ to the full subcategory of the category of open sets of $T$ with objects $\set U \cup \set {U_i: i \in I} \cup \set {U_i \cap U_j: \tuple {i, j} \in I^2}$.

Subcategories

This category has the following 2 subcategories, out of 2 total.

Pages in category "Definitions/Sheaf Theory"

The following 36 pages are in this category, out of 36 total.