Category:Inductive Classes

From ProofWiki
Jump to navigation Jump to search

This category contains results about Inductive Classes.
Definitions specific to this category can be found in Definitions/Inductive Classes.

Let $A$ be a class.


Then $A$ is inductive if and only if:

\((1)\)   $:$   $A$ contains the empty set:    \(\ds \quad \O \in A \)      
\((2)\)   $:$   $A$ is closed under the successor mapping:      \(\ds \forall x:\) \(\ds \paren {x \in A \implies x^+ \in A} \)      where $x^+$ is the successor of $x$
  That is, where $x^+ = x \cup \set x$

Subcategories

This category has the following 6 subcategories, out of 6 total.

G

I

M

S

T

Pages in category "Inductive Classes"

The following 2 pages are in this category, out of 2 total.