Category:Limits Superior of Set Sequences
Jump to navigation
Jump to search
This category contains results about Limits Superior of Set Sequences.
Definitions specific to this category can be found in Definitions/Limits Superior of Set Sequences.
Let $\sequence {E_n : n \in \N}$ be a sequence of sets.
Then the limit superior of $\sequence {E_n: n \in \N}$, denoted $\ds \limsup_{n \mathop \to \infty} E_n$, is defined as:
\(\ds \limsup_{n \mathop \to \infty} E_n\) | \(:=\) | \(\ds \bigcap_{i \mathop = 0}^\infty \bigcup_{n \mathop = i}^\infty E_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {E_0 \cup E_1 \cup E_2 \cup \ldots} \cap \paren {E_1 \cup E_2 \cup E_3 \cup \ldots} \cap \ldots\) |
Pages in category "Limits Superior of Set Sequences"
The following 5 pages are in this category, out of 5 total.