Category:Localic Mappings
Jump to navigation
Jump to search
This category contains results about Localic Mappings.
Let $L_1 = \struct{S_1, \preceq_1}, L_2 = \struct{S_2, \preceq_2}$ be locales.
Let $f : L_1 \to L_2$ be a continuous map.
That is, $f$ is the dual morphism of a frame homomorphism $\loweradjoint f : L_2 \to L_1$.
The frame homomorphism $\loweradjoint f : L_2 \to L_1$ corresponding to $f$ is a lower adjoint of a Galois connection $\struct{\upperadjoint f, \loweradjoint f}$.
The upper adjoint $\upperadjoint f : L_1 \to L_2$ of $\struct{\upperadjoint f, \loweradjoint f}$ is called a localic mapping.
Pages in category "Localic Mappings"
The following 4 pages are in this category, out of 4 total.