# Category:Odd Functions

Jump to navigation
Jump to search

This category contains results about Odd Functions.

Let $X \subset \R$ be a symmetric set of real numbers:

- $\forall x \in X: -x \in X$

A real function $f: X \to \R$ is an **odd function** if and only if:

- $\forall x \in X: f \left({-x}\right) = -f \left({x}\right)$

## Also see

## Pages in category "Odd Functions"

The following 15 pages are in this category, out of 15 total.