Definition:Odd Function
Jump to navigation
Jump to search
Definition
Let $X \subset \R$ be a symmetric set of real numbers:
- $\forall x \in X: -x \in X$
A real function $f: X \to \R$ is an odd function if and only if:
- $\forall x \in X: \map f {-x} = -\map f x$
Examples
Identity Function
Let $I_\R: \R \to \R$ denote the identity function on $\R$.
Then $I_\R$ is an odd function.
Cube Function
Let $f: \R \to \R$ denote the cube function on $\R$.
- $\forall x \in \R: \map f x = x^3$
Then $f$ is an odd function.
Also see
- Results about odd functions can be found here.
Sources
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Chapter One: $\S 4$. Even and Odd Functions: $(2)$
- 1973: G. Stephenson: Mathematical Methods for Science Students (2nd ed.) ... (previous) ... (next): Chapter $1$: Real Numbers and Functions of a Real Variable: $1.3$ Functions of a Real Variable: $\text {(h)}$ Even and Odd Functions
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $1$. Functions: $1.5$ Trigonometric or Circular Functions: $1.5.2$ Sine Function
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): odd function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): odd function
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): odd function