Category:Permanents
Jump to navigation
Jump to search
This category contains results about Permanents.
Definitions specific to this category can be found in Definitions/Permanents.
Let $\mathbf A = \sqbrk a_n$ be a square matrix of order $n$.
That is, let:
- $\mathbf A = \begin {pmatrix} a_{1 1} & a_{1 2} & \cdots & a_{1 n} \\ a_{2 1} & a_{2 2} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end {pmatrix}$
Let $\lambda: \N_{>0} \to \N_{>0}$ be a permutation on $\N_{>0}$.
Then the permanent of $\mathbf A$ is defined as:
- $\ds \sum_{\lambda} \paren {\prod_{k \mathop = 1}^n a_{k \map \lambda k} } = \sum_{\lambda} a_{1 \map \lambda 1} a_{2 \map \lambda 2} \cdots a_{n \map \lambda n}$
where:
- the summation $\ds \sum_\lambda$ goes over all the $n!$ permutations of $\set {1, 2, \ldots, n}$.