Definition:Permanent
Jump to navigation
Jump to search
Definition
Let $\mathbf A = \sqbrk a_n$ be a square matrix of order $n$.
That is, let:
- $\mathbf A = \begin {pmatrix} a_{1 1} & a_{1 2} & \cdots & a_{1 n} \\ a_{2 1} & a_{2 2} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end {pmatrix}$
Let $\lambda: \N_{>0} \to \N_{>0}$ be a permutation on $\N_{>0}$.
Then the permanent of $\mathbf A$ is defined as:
- $\ds \sum_{\lambda} \paren {\prod_{k \mathop = 1}^n a_{k \map \lambda k} } = \sum_{\lambda} a_{1 \map \lambda 1} a_{2 \map \lambda 2} \cdots a_{n \map \lambda n}$
where:
- the summation $\ds \sum_\lambda$ goes over all the $n!$ permutations of $\set {1, 2, \ldots, n}$.
Examples
3 x 3 Matrix
The square matrix:
- $\begin {pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end {pmatrix}$
has a permanent of $450$.
Matrix whose Entries are Product of Row and Column Indices
The square matrix of the form:
- $\begin{pmatrix} 1 \times 1 & 1 \times 2 & \cdots & 1 \times m \\ 2 \times 1 & 2 \times 2 & \cdots & 2 \times m \\ \vdots & \vdots & \ddots & \vdots \\ m \times 1 & m \times 2 & \cdots & m \times m \end{pmatrix}$
has a permanent of $\paren {n!}^3$.
Also see
- Results about permanents can be found here.
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.5$: Permutations and Factorials: Exercise $15$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): permanent