Category:Power Series Expansion for Hyperbolic Cosecant Function
Jump to navigation
Jump to search
This category contains pages concerning Power Series Expansion for Hyperbolic Cosecant Function:
The hyperbolic cosecant function has a Taylor series expansion:
\(\ds \csch x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \dfrac {2 \paren {1 - 2^{2 n - 1} } B_{2 n} \, x^{2 n - 1} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 x - \frac x 6 + \frac {7 x^3} {360} - \frac {31 x^5} {15 \, 120} + \cdots\) |
where $B_n$ denotes the Bernoulli numbers.
This converges for $0 < \size x < \pi$.
Pages in category "Power Series Expansion for Hyperbolic Cosecant Function"
The following 2 pages are in this category, out of 2 total.