Category:Bernoulli Numbers
Jump to navigation
Jump to search
This category contains results about Bernoulli Numbers.
Definitions specific to this category can be found in Definitions/Bernoulli Numbers.
The Bernoulli numbers $B_n$ are a sequence of rational numbers defined by:
Generating Function
- $\ds \frac x {e^x - 1} = \sum_{n \mathop = 0}^\infty \frac {B_n x^n} {n!}$
Recurrence Relation
- $B_n = \begin {cases} 1 & : n = 0 \\ \ds - \sum_{k \mathop = 0}^{n - 1} \binom n k \frac {B_k} {n + 1 - k} & : n > 0 \end {cases}$
or equivalently:
- $B_n = \begin {cases} 1 & : n = 0 \\ \ds - \frac 1 {n + 1} \sum_{k \mathop = 0}^{n - 1} \binom {n + 1} k B_k & : n > 0 \end {cases}$
Subcategories
This category has the following 15 subcategories, out of 15 total.
Pages in category "Bernoulli Numbers"
The following 20 pages are in this category, out of 20 total.
P
- Power Series Expansion for Cosecant Function
- Power Series Expansion for Cotangent Function
- Power Series Expansion for Hyperbolic Cosecant Function
- Power Series Expansion for Hyperbolic Cotangent Function
- Power Series Expansion for Hyperbolic Tangent Function
- Power Series Expansion for Tangent Function