# Category:Pre-Measures

Jump to navigation
Jump to search

This category contains results about **Pre-Measures**.

Definitions specific to this category can be found in Definitions/Pre-Measures.

Let $X$ be a set.

Let $\SS \subseteq \powerset X$ be a collection of subsets of $X$.

Let $\O \in \SS$.

Let $\mu: \SS \to \overline \R$ be a mapping, where $\overline \R$ denotes the set of extended real numbers.

Then $\mu$ is said to be a **pre-measure** if and only if it satisfies the following conditions:

- $(1): \quad$ For all $A \in \SS$, if $\map \mu A$ is finite then $\map \mu A \ge 0$.

- $(2): \quad \map \mu \O = 0$

- $(3): \quad$ For every sequence $\sequence {A_n}_{n \mathop \in \N}$ of pairwise disjoint sets in $\SS$ with $\ds \bigcup_{n \mathop \in \N} A_n \in \SS$:
- $\ds \map \mu {\bigcup_{n \mathop \in \N} A_n} = \sum_{n \mathop \in \N} \map \mu {A_n}$

- that is, that $\mu$ is countably additive.

## Pages in category "Pre-Measures"

The following 5 pages are in this category, out of 5 total.