# Category:Signum Function

Jump to navigation
Jump to search

This category contains results about Signum Function.

Definitions specific to this category can be found in Definitions/Signum Function.

Let $X \subseteq \R$ be a subset of the real numbers.

The **signum function** $\sgn: X \to \set {-1, 0, 1}$ is defined as:

- $\forall x \in X: \map \sgn x := \sqbrk {x > 0} - \sqbrk {x < 0}$

where $\sqbrk {x > 0}$ etc. denotes Iverson's convention.

That is:

- $\forall x \in X: \map \sgn x := \begin{cases} -1 & : x < 0 \\ 0 & : x = 0 \\ 1 & : x > 0 \end{cases}$

## Pages in category "Signum Function"

The following 5 pages are in this category, out of 5 total.