Signum Function is Completely Multiplicative

From ProofWiki
Jump to navigation Jump to search

Theorem

The signum function on the set of real numbers is a completely multiplicative function:

$\forall x, y \in \R: \map \sgn {x y} = \map \sgn x \map \sgn y$


Proof

Let $x = 0$ or $y = 0$.

Then:

\(\ds x y\) \(=\) \(\ds 0\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map \sgn {x y}\) \(=\) \(\ds 0\)

and either $\map \sgn x = 0$ or $\map \sgn y = 0$ and so:

\(\ds \map \sgn x \map \sgn y\) \(=\) \(\ds 0\)
\(\ds \) \(=\) \(\ds \map \sgn {x y}\) from $(1)$ above

$\Box$


Let $x > 0$ and $y > 0$.

Then:

\(\ds \map \sgn x\) \(=\) \(\ds 1\)
\(\, \ds \land \, \) \(\ds \map \sgn y\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds \map \sgn x \map \sgn y\) \(=\) \(\ds 1\)


and:

\(\ds x y\) \(>\) \(\ds 0\)
\(\ds \map \sgn {x y}\) \(=\) \(\ds 1\) Definition of Signum Function
\(\ds \) \(=\) \(\ds \map \sgn x \map \sgn y\)

$\Box$


Let $x < 0$ and $y < 0$.

Then:

\(\ds \map \sgn x\) \(=\) \(\ds -1\)
\(\, \ds \land \, \) \(\ds \map \sgn y\) \(=\) \(\ds -1\)
\(\ds \leadsto \ \ \) \(\ds \map \sgn x \map \sgn y\) \(=\) \(\ds 1\)


and:

\(\ds x y\) \(>\) \(\ds 0\)
\(\ds \map \sgn {x y}\) \(=\) \(\ds 1\) Definition of Signum Function
\(\ds \) \(=\) \(\ds \map \sgn x \map \sgn y\)

$\Box$


Let $x < 0$ and $y > 0$.

Then:

\(\ds \map \sgn x\) \(=\) \(\ds -1\)
\(\, \ds \land \, \) \(\ds \map \sgn y\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds \map \sgn x \map \sgn y\) \(=\) \(\ds -1\)


and:

\(\ds x y\) \(<\) \(\ds 0\)
\(\ds \map \sgn {x y}\) \(=\) \(\ds -1\) Definition of Signum Function
\(\ds \) \(=\) \(\ds \map \sgn x \map \sgn y\)

$\Box$


The same argument, mutatis mutandis, covers the case where $x > 0$ and $y < 0$.

$\blacksquare$