# Cauchy's Integral Formula

This article needs to be linked to other articles.In particular: "Radius of closed disk", "anticlockwise"You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{MissingLinks}}` from the code. |

## Theorem

Let $D = \set {z \in \C: \cmod z \le r}$ be the closed disk of radius $r$ in $\C$.

Let $f: U \to \C$ be holomorphic on some open set containing $D$.

Then for each $a$ in the interior of $D$:

- $\ds \map f a = \frac 1 {2 \pi i} \oint_{\partial D} \frac {\map f z} {\paren {z - a} } \rd z$

where $\partial D$ is the boundary of $D$, and is traversed anticlockwise.

### General Result

Let $n \in \N$ be a natural number.

Then for each $a$ in the interior of $D$:

- $\ds f^{\paren n} \paren a = \dfrac {n!} {2 \pi i} \oint_{\partial D} \frac {\map f z} {\paren {z - a}^{n + 1} } \rd z$

where $\partial D$ is the boundary of $D$, and is traversed anticlockwise.

## Proof

This article needs proofreading.Please check it for mathematical errors.If you believe there are none, please remove `{{Proofread}}` from the code.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Proofread}}` from the code. |

Let $C$ be any arbitrary closed curve which defines a region $R$ where the function $\map f z$ is analytic.

Let $z_0$ be any point in the region $R$ such that:

- $\dfrac {\map f z} {z - z_0}$ is analytic everywhere except at $z_0$.

We draw a circle $C_1$ with center at $z_0$ and radius $r$ such that $r \to 0$.

This makes $C$ and $C_1$ a multiply connected region.

This article, or a section of it, needs explaining.In particular: A diagram at this point would be useful.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Explain}}` from the code. |

According to Cauchy's Integral Theorem for a multiply connected region:

\(\ds I\) | \(:=\) | \(\ds \oint_C \frac {\map f z} {z - z_0} \rd z\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \oint_{C_1} \frac {\map f z} {z - z_0} \rd z\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \oint_{C_1} \frac {\map f {z_0} + \paren {\map f z - \map f {z_0} } } {z - z_0} \rd z\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \map f {z_0} \oint_{C_1} \frac {\rd z} {z - z_0} + \oint_{C_1} \frac {\map f z - \map f {z_0} } {z - z_0} \rd z\) |

Let:

\(\ds z - z_0\) | \(=\) | \(\ds r e^{i \theta}\) | ||||||||||||

\(\ds \leadsto \ \ \) | \(\ds \d z\) | \(=\) | \(\ds i r e^{i \theta} \rd \theta\) | |||||||||||

\(\ds \leadsto \ \ \) | \(\ds \oint_{C_1} \frac {\rd z} {z - z_0}\) | \(=\) | \(\ds \int_0^{2 \pi} \frac {i r e^{i \theta} } {r e^{i \theta} } \rd \theta\) | |||||||||||

\(\ds \) | \(=\) | \(\ds i \int_0^{2 \pi} \rd \theta\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds 2 \pi i\) |

Now:

- $\ds I = 2 \pi i \map f {z_0} + \oint_{C_1} \frac {\map f z - \map f {z_0} } {z - z_0} \rd z$

According to Epsilon-Delta definition of limit, for every $\left|{z - z_0}\right| < \delta$ there exists a $\epsilon \in \R_{>0}$ such that:

- $\cmod {\map f z - \map f {z_0} } < \epsilon$

Hence:

\(\ds \cmod {\oint_{C_1} \frac {\map f z - \map f {z_0} } {z - z_0} \rd z}\) | \(\le\) | \(\ds \oint_{C_1} \frac {\cmod {\map f z - \map f {z_0} } } {\cmod {z - z_0} } \cmod {\d z}\) | ||||||||||||

\(\ds \) | \(\le\) | \(\ds \frac {\epsilon} {\delta} \oint_{C_1} \cmod {\d z}\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds 2 \pi \epsilon\) |

This article, or a section of it, needs explaining.In particular: The precise meaning of $\cmod {\d z}$You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Explain}}` from the code. |

As $\epsilon \to 0$:

- $\ds \oint_{C_1} \frac {\map f z - \map f {z_0} } {z - z_0} \rd z = 0$

So:

\(\ds I\) | \(=\) | \(\ds \map f {z_0} \oint_{C_1} \frac {\rd z} {z - z_0} + \oint_{C_1} \frac {\map f z - \map f {z_0} } {z - z_0} \rd z\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds 2 \pi i \map f {z_0} + 0\) | ||||||||||||

\(\ds \leadsto \ \ \) | \(\ds \oint_C \frac {\map f z} {z - z_0} \rd z\) | \(=\) | \(\ds 2 \pi i \, \map f {z_0}\) |

$\blacksquare$

## Source of Name

This entry was named for Augustin Louis Cauchy.

## Historical Note

Cauchy's Integral Formula was developed by Augustin Louis Cauchy during his work to establish the groundwork of the discipline of complex analysis.

Karl Weierstrass independently discovered it during his own exercise to rebuild the theory from first principles.

## Also see

## Sources

- 1992: George F. Simmons:
*Calculus Gems*... (previous) ... (next): Chapter $\text {A}.26$: Cauchy ($\text {1789}$ – $\text {1857}$)