Characterisation of Cauchy Sequence in Non-Archimedean Norm/Sufficient Condition

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, \norm {\,\cdot\,} }$ be a normed division ring with non-Archimedean norm $\norm {\,\cdot\,}$.

Let $\sequence {x_n}$ be a sequence in $R$.

Let $\ds \lim_{n \mathop \to \infty} \norm {x_{n + 1} - x_n} = 0$.


Then:

$\sequence {x_n}$ is a Cauchy sequence.


Proof

Let $\epsilon > 0$ be given.

By assumption $\exists N \in \N$ such that:

$(1) \quad \forall n > N: \norm {x_{n + 1} - x_n} < 0$


Suppose $n, m > N$, and $m = n + r > n$.

Then:

\(\ds \norm {x_m - x_n}\) \(=\) \(\ds \norm {x_{n + r} - x_{n + r - 1} + x_{n + r - 1} - x_{n + r - 2} + \dotsb + x_{n + 1} - x_n}\)
\(\ds \) \(=\) \(\ds \max \set {\norm {x_{n + r} - x_{n + r - 1} }, \norm {x_{n + r - 1} - x_{n + r - 2} }, \dotsc, \norm {x_{n + 1} - x_n} }\) as $\norm {\,\cdot\,}$ is non-Archimedean
\(\ds \) \(=\) \(\ds \norm {x_{n + s} - x_{n + s - 1} }\) for some $s$: $0 < s \le r$
\(\ds \) \(<\) \(\ds \epsilon\) by $(1)$

It follows that:

$\sequence {x_n}$ is a Cauchy sequence.

$\blacksquare$


Sources