Characteristic Function of Gaussian Distribution/Lemma 2

From ProofWiki
Jump to navigation Jump to search

Lemma for Characteristic Function of Gaussian Distribution

$\ds \lim_{\alpha \mathop \to \infty} \int_{\frac{-\alpha - \mu} {\sqrt 2 \sigma} - i \frac {t \sigma} {\sqrt 2} }^{\frac {\alpha - \mu} {\sqrt 2 \sigma} - i \frac {t \sigma} {\sqrt 2} } e^{-z^2} \rd z = \sqrt {2 \pi \sigma^2}$


Proof

Let $\Gamma \subset \C$ be the rectangular contour with corners:

\(\ds c_1\) \(=\) \(\ds \frac {-\alpha - \mu} {\sqrt 2 \sigma} - i \frac {t \sigma} {\sqrt 2}\)
\(\ds c_2\) \(=\) \(\ds \frac {\alpha - \mu} {\sqrt 2 \sigma} - i \frac {t \sigma} {\sqrt 2}\)
\(\ds c_3\) \(=\) \(\ds \frac {\alpha - \mu} {\sqrt 2 \sigma}\)
\(\ds c_4\) \(=\) \(\ds \frac {-\alpha - \mu} {\sqrt 2 \sigma}\)


Since $e^{-z^2}$ is holomorphic everywhere in the region bounded by $\Gamma$, the Cauchy Integral Theorem states that:

\(\ds \oint_{z \mathop \in \Gamma} e^{-z^2} \rd z\) \(=\) \(\ds \int_{c_1}^{c_2} e^{-z^2} \rd z + \int_{c_2}^{c_3} e^{-z^2} \rd z + \int_{c_3}^{c_4} e^{-z^2} \rd z + \int_{c_4}^{c_1} e^{-z^2} \rd z\)
\(\ds \) \(=\) \(\ds 0\)

We now evaluate each linear contour integral in the limit as $\alpha$ goes to infinity:


Between $c_3$ and $c_4$

\(\ds \lim_{\alpha \mathop \to \infty} \int_{c_3}^{c_4} e^{-z^2} \rd z\) \(=\) \(\ds \lim_{\alpha \mathop \to \infty} \int_{\frac {\alpha - \mu} {\sqrt 2 \sigma} }^{\frac {-\alpha - \mu} {\sqrt 2 \sigma} } e^{-z^2} \rd z\)
\(\ds \) \(=\) \(\ds -\lim_{\alpha \mathop \to \infty} \int_{\frac {-\alpha - \mu} {\sqrt 2 \sigma} }^{\frac {\alpha - \mu} {\sqrt 2 \sigma} } e^{ -z^2 } \rd z\)
\(\ds \) \(=\) \(\ds -\sqrt {2 \pi \sigma^2}\) Integral of Gaussian Distribution


Between $c_2$ and $c_3$

\(\ds \norm {\lim_{\alpha \rightarrow \infty} \int_{c_2}^{c_3} e^{-z^2} \rd z}\) \(=\) \(\ds \norm {\lim_{\alpha \rightarrow \infty} \int_{c_2}^{c_3} e^{-z^2} \rd z}\)
\(\ds \) \(\le\) \(\ds \lim_{\alpha \rightarrow \infty} \int_{c_2}^{c_3} \norm {e^{-z^2} } \rd z\)
\(\ds \) \(\le\) \(\ds \lim_{\alpha \rightarrow \infty} \int_{c_2}^{c_3} \max_{z \mathop \in \closedint {c_2} {c_3} } \norm {e^{-z^2} } \rd z\)
\(\ds \) \(\le\) \(\ds \lim_{\alpha \rightarrow \infty} \int_{c_2}^{c_3} \norm {e^{-\paren {\frac {\alpha - \mu} {\sqrt 2 \sigma} }^2} } \rd z\)
\(\ds \) \(\le\) \(\ds \lim_{\alpha \rightarrow \infty} \norm {e^{-\paren {\frac {\alpha - \mu} {\sqrt 2 \sigma} }^2} } \int_{c_2}^{c_3} \rd z\)
\(\ds \) \(=\) \(\ds 0\)


Between $c_4$ and $c_1$

By a similar argument as for between $c_2$ and $c_3$, the integral between $c_4$ and $c_1$ is also $0$.


Between $c_1$ and $c_2$

\(\ds \oint_{z \mathop \in \Gamma} e^{-z^2} \rd z\) \(=\) \(\ds \int_{c_1}^{c_2} e^{-z^2} \rd z + \int_{c_2}^{c_3} e^{-z^2} \rd z + \int_{c_3}^{c_4} e^{-z^2} \rd z + \int_{c_4}^{c_1} e^{-z^2} \rd z\)
\(\ds \) \(=\) \(\ds \int_{c_1}^{c_2} e^{-z^2} \rd z + 0 - \sqrt {2 \pi \sigma^2} + 0\)
\(\ds \) \(=\) \(\ds 0\)

and therefore:

\(\ds \int_{c_1}^{c_2} e^{-z^2} \rd z\) \(=\) \(\ds \sqrt {2 \pi \sigma^2}\)

$\blacksquare$