Characterization of Completely Prime Ideal in Complete Lattice

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct{L, \vee, \wedge, \preceq}$ be a complete lattice.


Let $I \subseteq L$.


Then:

$I$ is a completely prime ideal

if and only if

$(1)\quad\forall A \subseteq L : \bigwedge A \in I \iff \paren{\exists a \in A : a \in I}$
$(2)\quad\forall $ finite $A \subseteq L : \bigvee A \in I \iff \paren{\forall a \in A : a \in I}$

where:

  • $\bigwedge A$ denotes the infimum of $A$ in $L$
  • $\bigvee A$ denotes the supremum of $A$ in $L$


Proof

This is the dual statement of Characterization of Completely Prime Filter in Complete Lattice by Dual Pairs (Order Theory).

The result follows from the Duality Principle.

$\blacksquare$