Characterization of Pointwise Minimum of Real-Valued Functions
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ be a set.
Let $\R$ denote the real number line.
Let $f, g :S \to \R$ be real-valued functions.
Let $f \wedge g$ denote the pointwise maximum of $f$ and $g$, that is, $f \wedge g$ is the mapping defined by:
- $\forall s \in S : \map {\paren{f \wedge g} } s = \min \set{\map f s, \map g s}$
Then:
- $f \wedge g = \dfrac 1 2 \paren{f + g - \size{f - g}}$
where:
- $f + g$ denotes the pointwise addition of $f$ and $g$
- $f - g$ denotes the pointwise difference of $f$ and $g$
- $\size{f - g}$ denotes the absolute value of $f - g$
- $\dfrac 1 2 \paren{f + g - \size{f - g}}$ denotes the pointwise scalar multiplication of $f + g - \size{f - g}$ by $\dfrac 1 2$
Proof
We have:
\(\ds \forall s \in S: \, \) | \(\ds \map {\paren{f \wedge g} } s\) | \(=\) | \(\ds \min\set {\map f s, \map g s}\) | Definition of Pointwise Minimum of Real-Valued Functions | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \paren{\map f s + \map g x - \size{\map f x - \map g x} }\) | Min Operation Representation on Real Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \paren{\map f s + \map g s - \size{\map {\paren{f - g} } s} }\) | Definition of Pointwise Difference of Real-Valued Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \paren{\map f s + \map g s - \map {\size{f - g} } s}\) | Definition of Absolute Value of Real-Valued Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \paren{\map {\paren{f + g} } s - \map {\size{f - g} } s}\) | Definition of Pointwise Addition of Real-Valued Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \map {\paren{f + g - \size{f - g} } } s\) | Definition of Pointwise Difference of Real-Valued Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\paren{\dfrac 1 2 \paren{f + g - \size{f - g} } } } s\) | Definition of Pointwise Scalar Multiplication of Real-Valued Function |
By definition of equality of mappings:
- $f \wedge g = \dfrac 1 2 \paren{f + g - \size{f - g}}$
$\blacksquare$