Characterization of T1 Space using Basis
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $T = \struct {S, \tau}$ be a topological space.
Let $\BB$ be a basis for $T$.
Then:
- $T$ is a $T_1$ Space
- $\forall x, y \in S : x \ne y$, both:
- $\exists B_x \in \BB : x \in B_x, y \notin B_x$
- and:
- $\exists B_y \in \BB : y \in B_y, x \notin B_y$
Proof
Necessary Condition
From Basis induces Local Basis:
- $\forall x \in S : \BB_x = \set{B \in \BB : x \in B}$ is a local basis of $x$
By definition of local basis:
- $\forall x \in S : \BB_x$ is a neighborhood basis of open sets
From Characterization of T1 Space using Neighborhood Basis:
- $\forall x, y \in S : x \ne y$, both:
- $\exists B_x \in \BB_x : y \notin B_x$
- and:
- $\exists B_y \in \BB_y : x \notin B_y$
Hence:
- $\forall x, y \in S : x \ne y$, both:
- $\exists B_x \in \BB : x \in B_x, y \notin B_x$
- and:
- $\exists B_y \in \BB : y \in B_y, x \notin B_y$
$\Box$
Sufficient Condition
Let $T$ satisfy:
- $\forall x, y \in S : x \ne y$, both:
- $\exists B_x \in \BB : x \in B_x, y \notin B_x$
- and:
- $\exists B_y \in \BB : y \in B_y, x \notin B_y$
By definition of basis:
- $\BB \subseteq \tau$.
It follows that:
- $\forall x, y \in S : x \ne y$, both:
- $\exists B_x \in \tau : x \in B_x, y \notin B_x$
- and:
- $\exists B_y \in \tau : y \in B_y, x \notin B_y$
Hence $T$ is a $T_1$ Space by definition.
$\blacksquare$