Chebyshev's Sum Inequality/Discrete/Also presented as
Jump to navigation
Jump to search
Chebyshev's Sum Inequality (Discrete): Also presented as
Some sources present Chebyshev's sum inequality as:
- $\ds n \sum_{k \mathop = 1}^n a_k b_k \ge \paren {\sum_{k \mathop = 1}^n a_k} \paren {\sum_{k \mathop = 1}^n b_k}$
where:
- $a_1, a_2, \ldots, a_n$ are real numbers such that:
- $a_1 \ge a_2 \ge \cdots \ge a_n$
- $b_1, b_2, \ldots, b_n$ are real numbers such that:
- $b_1 \ge b_2 \ge \cdots \ge b_n$
Proof
We have by hypothesis that the sequences $\sequence {a_k}$ and $\sequence {b_k}$ are both decreasing.
For $j, k \in \set {1, 2, \ldots, n}$, consider:
- $\paren {a_j - a_k} \paren {b_j - b_k}$
Therefore $a_j - a_k$ and $b_j - b_k$ have the same sign for all $j, k \in \set {1, 2, \ldots, n}$.
So:
- $\forall j, k \in \set {1, 2, \ldots, n}: \paren {a_j - a_k} \paren {b_j - b_k} \ge 0$
Hence:
\(\ds 0\) | \(\le\) | \(\ds \sum_{j \mathop = 1}^n \sum_{k \mathop = 1}^n \paren {a_j - a_k} \paren {b_j - b_k}\) | |||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = 1}^n \sum_{k \mathop = 1}^n \paren {a_j b_j - a_k b_j - a_j b_k + a_k b_k}\) | |||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = 1}^n \sum_{k \mathop = 1}^n a_j b_j - \sum_{j \mathop = 1}^n \sum_{k \mathop = 1}^n a_k b_j - \sum_{j \mathop = 1}^n \sum_{k \mathop = 1}^n a_j b_k + \sum_{j \mathop = 1}^n \sum_{k \mathop = 1}^n a_k b_k\) | |||||||||||||
\(\ds \) | \(=\) | \(\ds n \sum_{j \mathop = 1}^n a_j b_j - \sum_{k \mathop = 1}^n a_k \sum_{j \mathop = 1}^n b_j - \sum_{j \mathop = 1}^n a_j \sum_{k \mathop = 1}^n b_k + n \sum_{k \mathop = 1}^n a_k b_k\) | General Distributivity Theorem | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 n \sum_{k \mathop = 1}^n a_k b_k - 2 \sum_{k \mathop = 1}^n a_k \sum_{k \mathop = 1}^n b_k\) | renaming and gathering equal terms | ||||||||||||
\(\ds \) | \(=\) | \(\ds n \sum_{k \mathop = 1}^n a_k b_k - \sum_{k \mathop = 1}^n a_k \sum_{k \mathop = 1}^n b_k\) | dividing through by $2$ | ||||||||||||
Then we may manipulate it into the required form: | |||||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 n \sum_{k \mathop = 1}^n a_k b_k - \dfrac 1 {n^2} \sum_{k \mathop = 1}^n a_k \sum_{k \mathop = 1}^n b_k\) | dividing through by $n^2$ | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 1 n \sum_{k \mathop = 1}^n a_k b_k\) | \(\ge\) | \(\ds \paren {\dfrac 1 n \sum_{k \mathop = 1}^n a_k} \paren {\dfrac 1 n \sum_{k \mathop = 1}^n b_k}\) |
The result follows.
$\blacksquare$
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.2$ Inequalities: Chebyshev's Inequality: $3.2.7$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 36$: Inequalities: Chebyshev's Inequality: $36.11$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 37$: Inequalities: Chebyshev's Inequality: $37.11.$