Circuits of Matroid iff Matroid Circuit Axioms/Lemma 2
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ be a finite set.
Let $\mathscr C$ be a non-empty set of subsets of $S$ that satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 4)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \land w \in C_1 \setminus C_2 \implies \exists C_3 \in \mathscr C : w \in C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
For any ordered tuple $\tuple{x_1, \ldots, x_q}$ of elements of $S$, let $\map \theta {x_1, \ldots, x_q}$ be the ordered tuple defined by:
- $\forall i \in \set{1, \ldots, q} : \map \theta {x_1, \ldots, x_q}_i = \begin{cases} 0 & : \exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_i}\\ 1 & : \text {otherwise} \end{cases}$
Let $t$ be the mapping from the set of ordered tuple of $S$ defined by:
- $\map t {x_1, \ldots, x_q} = \ds \sum_{i = 1}^q \map \theta {x_1, \ldots, x_q}_i$
Let $\rho : \powerset S \to \Z$ be the mapping defined by:
- $\forall A \subseteq S$:
- $\map \rho A = \begin{cases} 0 & : \text{if } A = \O \\ \map t {x_1, \ldots, x_q } & : \text{if } A = \set{x_1, \ldots, x_q} \end{cases}$
Let $X \subseteq S$ and $y \in S \setminus X$.
Then:
- $\map \rho {X \cup \set y} = \map \rho X$ if and only if $\exists C \in \mathscr C : y \in C \subseteq X \cup \set y$
Proof
Let $X = \set{x_1, \ldots, x_q}$
We have:
\(\ds \map \rho {X \cup \set y}\) | \(=\) | \(\ds \map t {x_1, \ldots, x_q, y}\) | Definition of $\rho$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map t {x_1, \ldots, x_q} + \map \theta {x_1, \ldots, x_q, y}_{q+1}\) | Definition of $t$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \rho X + \map \theta {x_1, \ldots, x_q, y}_{q+1}\) | Definition of $t$ |
Hence:
\(\ds \map \rho {X \cup \set y} = \map \rho X\) | \(\leadstoandfrom\) | \(\ds \map \theta {x_1, \ldots, x_q, y}_{q+1} = 0\) | ||||||||||||
\(\ds \) | \(\leadstoandfrom\) | \(\ds \exists C \in \mathscr C : y \in C \subseteq X \cup \set y\) | Definition of $\theta$ |
$\blacksquare$