Closed Form for Pentatope Numbers
Jump to navigation
Jump to search
Theorem
The closed-form expression for the $n$th pentatope number is:
- $P_n = \dfrac {n \paren {n + 1} \paren {n + 2} \paren {n + 3} } {24}$
Proof
\(\ds P_n\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n T_k\) | Definition of Pentatope Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \frac {n \paren {n + 1} \paren {n + 2} } 6\) | Closed Form for Tetrahedral Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \frac {\paren {n^3 + 3 n^2 + 2 n} } 6\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 6 \sum_{k \mathop = 1}^n n^3 + \frac 1 2 \sum_{k \mathop = 1}^n n^2 + \frac 1 3 \sum_{k \mathop = 1}^n n\) | Summation is Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 6 \sum_{k \mathop = 1}^n n^3 + \frac 1 2 \sum_{k \mathop = 1}^n n^2 + \frac 1 3 \frac {n \paren {n + 1} } 2\) | Closed Form for Triangular Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 6 \sum_{k \mathop = 1}^n n^3 + \frac 1 2 \frac {n \paren {n + 1} \paren {2 n + 1} } 6 + \frac 1 3 \frac {n \paren {n + 1} } 2\) | Sum of Sequence of Squares | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 6 \dfrac {n^2 \paren {n + 1}^2} 4 + \frac 1 2 \frac {n \paren {n + 1} \paren {2 n + 1} } 6 + \frac 1 3 \frac {n \paren {n + 1} } 2\) | Sum of Sequence of Cubes | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {n^2 \paren {n + 1}^2 + 2 n \paren {n + 1} \paren {2 n + 1} + 4 n \paren {n + 1} } {24}\) | putting over a common denominator | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {n \paren {n + 1} \paren {n \paren {n + 1} + 2 \paren {2 n + 1} + 4} } {24}\) | extracting $n \paren {n + 1}$ as a factor | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {n \paren {n + 1} \paren {n^2 + 5 n + 6} } {24}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {n \paren {n + 1} \paren {n + 2} \paren {n + 3} } {24}\) | factorising |
$\blacksquare$
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $56$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $56$