Combination Theorem for Bounded Real-Valued Functions/Negation Rule

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a set.

Let $\R$ denote the real number line.

Let $f :S \to \R$ be bounded real-valued function.

Let $-f : S \to \R$ denote the pointwise negation of $f$, that is, $-f$ denotes the mapping defined by:

$\forall s \in S : \map {\paren{-f} } s = - \map f s$


Then:

$-f$ is a bounded real-valued function


Proof

By definition of bounded real-valued function

$\exists M \in \R_{\ge 0} : \forall s \in S : \size{\map f s} \le M$


We have:

\(\ds \forall s \in S: \, \) \(\ds \size{\map {\paren{-f} } s}\) \(=\) \(\ds \size{-\map f s}\) Definition of Absolute Value of Real-Valued Function
\(\ds \) \(=\) \(\ds \size{\map f s}\) Absolute Value of Negative
\(\ds \) \(\le\) \(\ds M\) Definition of Bounded Real-Valued Function


It follows that $-f$ is a bounded real-valued function by definition.

$\blacksquare$