Commutator of Group Element with Identity is Identity

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group whose identity is $e$.

Let $\sqbrk {g, h}$ denote the commutator of $g$ and $h$.


Then:

$\sqbrk {g, e} = e = \sqbrk {e, g}$


Proof

\(\ds \forall g \in G: \, \) \(\ds \sqbrk {g, e}\) \(=\) \(\ds g^{-1} \circ e^{-1} \circ g \circ e\) Definition of Commutator of Group Elements
\(\ds \) \(=\) \(\ds g^{-1} \circ e \circ g \circ e\) Identity is Self-Inverse
\(\ds \) \(=\) \(\ds g^{-1} \circ g\) Definition of Identity Element
\(\ds \) \(=\) \(\ds e\) Definition of Inverse Element


\(\ds \forall g \in G: \, \) \(\ds \sqbrk {e, g}\) \(=\) \(\ds e^{-1} \circ g^{-1} \circ e \circ g\) Definition of Commutator of Group Elements
\(\ds \) \(=\) \(\ds e^ \circ g^{-1} \circ e \circ g\) Identity is Self-Inverse
\(\ds \) \(=\) \(\ds g \circ g^{-1}\) Definition of Identity Element
\(\ds \) \(=\) \(\ds e\) Definition of Inverse Element

$\blacksquare$