Compact Space is Paracompact

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \struct {S, \tau}$ be a compact space.

Then $T$ is paracompact.


Proof

From the definition, $T$ is compact if and only if every open cover of $S$ has a finite subcover.

From Subcover is Refinement of Cover, it follows that every open cover of $S$ has an open refinement which is locally finite.


This is precisely the definition of paracompact.

$\blacksquare$


Sources