Complex Algebra/Examples/2x - 3iy + 4ix - 2y - 5 - 10i = (x + y + 2) - (y - x + 3)i

From ProofWiki
Jump to navigation Jump to search

Example of Complex Algebra

Let:

$2 x - 3 i y + 4 i x - 2 y - 5 - 10 i = \paren {x + y + 2} - \paren {y - x + 3} i$

Then:

\(\ds x\) \(=\) \(\ds 1\)
\(\ds y\) \(=\) \(\ds -2\)


Proof

Separating the real parts from the imaginary parts:

\(\ds 2 x - 2 y - 5\) \(=\) \(\ds x + y + 2\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds 3 y + 7\)


\(\ds -3 i y + 4 i x - 10 i\) \(=\) \(\ds \paren {y - x + 3} i\)
\(\ds \leadsto \ \ \) \(\ds -3 y + 4 x - 10\) \(=\) \(\ds y - x + 3\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 5 x - 4 y\) \(=\) \(\ds 13\)


Substituting for $x$ from $(1)$ into $(2)$:

\(\ds 5 \paren {3 y + 7} - 4 y\) \(=\) \(\ds 13\)
\(\ds \leadsto \ \ \) \(\ds 15 y + 35 - 4 y\) \(=\) \(\ds 13\)
\(\ds \leadsto \ \ \) \(\ds 11 y\) \(=\) \(\ds -22\)
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -2\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds 3 \times {-2} + 7\) substituting for $y$ from $(3)$ into $(1)$
\(\ds \) \(=\) \(\ds 1\)

$\blacksquare$


Sources