Congruence Modulo Equivalence for Integers in P-adic Integers/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_p$ be the $p$-adic integers for some prime $p$.

Let $k \in \N_{>0}$.


Then:

$\forall a \in \Z: \dfrac a {p^k} \in \Z_p \iff \dfrac a {p^k} \in \Z$


Proof

Necessary Condition

Let $a \in \Z$.

We have:

\(\ds \dfrac a {p^k}\) \(\in\) \(\ds \Z_p\)
\(\ds \leadsto \ \ \) \(\ds \dfrac a {p^k}\) \(\in\) \(\ds \Z_p \cap \Q\)
\(\ds \leadsto \ \ \) \(\ds \exists c, d \in \Z : p \nmid d: \, \) \(\ds \dfrac a {p^k}\) \(=\) \(\ds \dfrac c d\) Characterization of Rational P-adic Integer
\(\ds \leadsto \ \ \) \(\ds ad\) \(=\) \(\ds cp^k\) Multiply both sides by $dp^k$
\(\ds \leadsto \ \ \) \(\ds p^k\) \(\divides\) \(\ds ad\) Definition of Divisor
\(\ds \leadsto \ \ \) \(\ds p^k\) \(\divides\) \(\ds a\) Euclid's Lemma and $p \nmid d$
\(\ds \leadsto \ \ \) \(\ds \dfrac a {p^k}\) \(\in\) \(\ds \Z\) Definition of Divisor

$\Box$

Sufficient Condition

From Integers are Dense in P-adic Integers:

$\Z \subseteq \Z_p$

The result follows.

$\blacksquare$