Congruence Modulo Equivalence for Integers in P-adic Integers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_p$ be the $p$-adic integers for some prime $p$.

For any $a, b \in \Z_p$ and $n \in \N$, let $x \equiv y \pmod{p^n \Z_p}$ denote congruence modulo the principal ideal $p^n\Z_p$.

For any integers $a, b \in \Z$ and $n \in \N$, let $x \equiv y \pmod{p^n}$ denote congruence modulo integer $p^n$.


Let $x, y \in \Z$ be integers.

Let $k \in \N_{>0}$.


The following statements are equivalent:

$(1)\quad x \equiv y \pmod{p^k \Z_p}$
$(2)\quad x \equiv y \pmod{p^k}$
$(3)\quad p^k \divides \paren{x - y}$


Proof

Lemma

$\forall a \in \Z: \dfrac a {p^k} \in \Z_p \iff \dfrac a {p^k} \in \Z$

$\Box$


We have:

\(\ds x\) \(\equiv\) \(\ds y \pmod{p^k\Z_p}\)
\(\ds \leadstoandfrom \ \ \) \(\ds x - y\) \(\in\) \(\ds p^k\Z_p\) Definition of Congruence Modulo an Ideal
\(\ds \leadstoandfrom \ \ \) \(\ds \exists z \in \Z_p: \, \) \(\ds x - y\) \(=\) \(\ds p^kz\) Definition of Principal Ideal
\(\ds \leadstoandfrom \ \ \) \(\ds \dfrac {x - y} {p^k}\) \(\in\) \(\ds \Z_p\) Divide both sides by $p^k$
\(\ds \leadstoandfrom \ \ \) \(\ds \dfrac {x - y} {p^k}\) \(\in\) \(\ds \Z\) Lemma
\(\ds \leadstoandfrom \ \ \) \(\ds \exists a \in \Z: \, \) \(\ds \dfrac {x - y} {p^k}\) \(=\) \(\ds a\)
\(\ds \leadstoandfrom \ \ \) \(\ds \exists a \in \Z: \, \) \(\ds x - y\) \(=\) \(\ds p^ka\) Multiply both sides by $p^k$
\(\ds \leadstoandfrom \ \ \) \(\ds p^k\) \(\divides\) \(\ds \paren{x - y}\) Definition of Divisor of Integer
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\equiv\) \(\ds y \pmod{p^k}\) Definition of Congruence Modulo Integer

$\blacksquare$