Congruence Modulo Integer/Examples/3 equiv 15 mod 4

From ProofWiki
Jump to navigation Jump to search

Example of Congruence Modulo an Integer

$3 \equiv 15 \pmod 4$


Proof

By definition of congruence:

$x \equiv y \pmod n$ if and only if $x - y = k n$

for some $k \in \Z$.


We have:

$3 - 15 = -12 = \paren {-3} \times 4$

Thus:

$3 \equiv 15 \pmod 4$

$\blacksquare$


Sources