Congruence Modulo Integer/Examples/3 equiv 15 mod 4
Jump to navigation
Jump to search
Example of Congruence Modulo an Integer
- $3 \equiv 15 \pmod 4$
Proof
By definition of congruence:
- $x \equiv y \pmod n$ if and only if $x - y = k n$
for some $k \in \Z$.
We have:
- $3 - 15 = -12 = \paren {-3} \times 4$
Thus:
- $3 \equiv 15 \pmod 4$
$\blacksquare$
Sources
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $1$: Integral Domains: $\S 6$. The Residue Classes: Example $8$