Definition:Congruence (Number Theory)/Integers
Definition
Let $m \in \Z_{> 0}$.
Definition by Remainder after Division
Congruence modulo $m$ is defined as the relation $\equiv \pmod m$ on the set of all $a, b \in \Z$:
- $a \equiv b \pmod m := \set {\tuple {a, b} \in \Z \times \Z: \exists k \in \Z: a = b + k m}$
That is, such that $a$ and $b$ have the same remainder when divided by $m$.
Definition by Modulo Operation
Let $\bmod$ be defined as the modulo operation:
- $x \bmod m := \begin {cases} x - m \floor {\dfrac x m} & : m \ne 0 \\ x & : m = 0 \end {cases}$
Then congruence modulo $m$ is the relation on $\Z$ defined as:
- $\forall x, y \in \Z: x \equiv y \pmod m \iff x \bmod m = y \bmod m$
Definition by Integer Multiple
We also see that $a$ is congruent to $b$ modulo $m$ if their difference is a multiple of $m$:
Let $x, y \in \Z$.
$x$ is congruent to $y$ modulo $m$ if and only if their difference is an integer multiple of $m$:
- $x \equiv y \pmod m \iff \exists k \in \Z: x - y = k m$
Definition for Zero
- $x \equiv y \pmod 0 \iff x \bmod 0 = y \bmod 0 \iff x = y$
and:
- $x \equiv y \pmod 0 \iff \exists k \in \Z: x - y = 0 \times k = 0 \iff x = y$
Residue
Let $a, b \in \Z$.
Let $a \equiv b \pmod m$.
Then $b$ is a residue of $a$ modulo $m$.
Residue is another word for remainder, and is any integer congruent to $a$ modulo $m$.
Examples
Congruence Modulo 1
Let $x \equiv y \pmod 1$ be defined on the integers as congruence modulo $1$:
- $\forall x, y \in \Z: x \equiv y \pmod 1 \iff \exists k \in \Z: x - y = k$
That is, if their difference $x - y$ is an integer.
The equivalence classes of this equivalence relation is the set of integers:
- $\eqclass x 1 = \Z$
Congruence Modulo 2
Let $x \equiv y \pmod 2$ be defined on the integers as congruence modulo $2$:
- $\forall x, y \in \Z: x \equiv y \pmod 2 \iff \exists k \in \Z: x - y = 2 k$
That is, if their difference $x - y$ is an even integer.
The equivalence classes of this equivalence relation are of the form:
- $\eqclass x 2 = \set {\dotsc, x - 4, x - 2, x, x + 2, x + 4, \dotsc}$
which are:
\(\ds \eqclass 0 2\) | \(=\) | \(\ds \set {\dotsc, -4, -2, 0, 2, 4, \dotsc}\) | that is, the even integers | |||||||||||
\(\ds \eqclass 1 2\) | \(=\) | \(\ds \set {\dotsc, -3, -1, 1, 3, 5, \dotsc}\) | that is, the odd integers |
Each equivalence class has exactly one representative in the set $\set {0, 1}$.
Congruence Modulo 3
Let $x \mathrel \RR y$ be the equivalence relation defined on the integers as congruence modulo $3$:
- $x \mathrel \RR y \iff x \equiv y \pmod 3$
defined as:
- $\forall x, y \in \Z: x \equiv y \pmod 3 \iff \exists k \in \Z: x - y = 3 k$
That is, if their difference $x - y$ is a multiple of $3$.
The equivalence classes of this equivalence relation are of the form:
- $\eqclass x 3 = \set {\dotsc, x - 6, x - 3, x, x + 3, x + 6, \dotsc}$
which are:
\(\ds \eqclass 0 3\) | \(=\) | \(\ds \set {\dotsc, -6, -3, 0, 3, 6, \dotsc}\) | ||||||||||||
\(\ds \eqclass 1 3\) | \(=\) | \(\ds \set {\dotsc, -5, -2, 1, 4, 7, \dotsc}\) | ||||||||||||
\(\ds \eqclass 2 3\) | \(=\) | \(\ds \set {\dotsc, -4, -1, 2, 5, 8, \dotsc}\) |
Thus the partition of $\Z$ induced by $\RR$ is:
- $\Bbb S = \set {\eqclass 0 3, \eqclass 1 3, \eqclass 2 3}$
Each equivalence class has exactly one representative in the set $\set {0, 1, 2}$.
Further Specific Examples
Congruence Modulo $2$: $8 \equiv 2 \pmod 2$
- $8 \equiv 2 \pmod 2$
Congruence Modulo $2$: $8 \not \equiv 3 \pmod 2$
- $8 \not \equiv 3 \pmod 2$
Congruence Modulo $2$: $-3 \equiv -5 \pmod 2$
- $-3 \equiv -5 \pmod 2$
Congruence Modulo $3$: $12 \equiv 0 \pmod 3$
- $12 \equiv 0 \pmod 3$
Congruence Modulo $4$: $2 \equiv -6 \pmod 4$
- $2 \equiv -6 \pmod 4$
Congruence Modulo $4$: $3 \equiv 15 \pmod 4$
- $3 \equiv 15 \pmod 4$
Congruence Modulo $5$: $3 \equiv 18 \pmod 5$
- $3 \equiv 18 \pmod 5$
Congruence Modulo $5$: $13 \equiv 3 \pmod 5$
- $13 \equiv 3 \pmod 5$
Congruence Modulo $5$: $17 \equiv 12 \pmod 5$
- $17 \equiv 12 \pmod 5$
Congruence Modulo $6$: $-10 \equiv 8 \pmod 6$
- $-10 \equiv 8 \pmod 6$
Congruence Modulo $8$: $-2 \equiv 14 \pmod 8$
- $-2 \equiv 14 \pmod 8$
Notation
The relation $x$ is congruent to $y$ modulo $z$, usually denoted:
- $x \equiv y \pmod z$
is also frequently seen denoted as:
- $x \equiv y \ \paren {\mathop {\operatorname{modulo} } z}$
Some (usually older) sources render it as:
- $x \equiv y \ \paren {\mathop {\operatorname{mod.} } z}$
Also see
- Results about congruence in the context of number theory can be found here.
Historical Note
The concept of congruence modulo an integer was first explored by Carl Friedrich Gauss.
He originated the notation $a \equiv b \pmod m$ in his work Disquisitiones Arithmeticae, published in $1801$.
Linguistic Note
The word modulo comes from the Latin for with modulus, that is, with measure.
Sources
- 1967: John D. Dixon: Problems in Group Theory ... (previous) ... (next): Introduction: Notation
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): congruent: 2.
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): modulo
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): congruent: 2.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): modulo