Definition:Congruence (Number Theory)/Integers
Definition
Let $m \in \Z_{> 0}$.
Definition by Remainder after Division
Congruence modulo $m$ is defined as the relation $\equiv \pmod m$ on the set of all $a, b \in \Z$:
- $a \equiv b \pmod m := \set {\tuple {a, b} \in \Z \times \Z: \exists k \in \Z: a = b + k m}$
That is, such that $a$ and $b$ have the same remainder when divided by $m$.
Definition by Modulo Operation
Let $\bmod$ be defined as the modulo operation:
- $x \bmod m := \begin{cases} x - m \left \lfloor {\dfrac x m}\right \rfloor & : m \ne 0 \\ x & : m = 0 \end{cases}$
Then congruence modulo $m$ is the relation on $\Z$ defined as:
- $\forall x, y \in \Z: x \equiv y \pmod m \iff x \bmod m = y \bmod m$
Definition by Integer Multiple
We also see that $a$ is congruent to $b$ modulo $m$ if their difference is a multiple of $m$:
Let $x, y \in \Z$.
$x$ is congruent to $y$ modulo $m$ if and only if their difference is an integer multiple of $m$:
- $x \equiv y \pmod m \iff \exists k \in \Z: x - y = k m$
Definition for Zero
- $x \equiv y \pmod 0 \iff x \bmod 0 = y \bmod 0 \iff x = y$
and:
- $x \equiv y \pmod 0 \iff \exists k \in \Z: x - y = 0 \times k = 0 \iff x = y$
Residue
Let $a, b \in \Z$.
Let $a \equiv b \pmod m$.
Then $b$ is a residue of $a$ modulo $m$.
Residue is another word meaning remainder, and is any integer congruent to $a$ modulo $m$.
Examples
Congruence Modulo 1
Let $x \equiv y \pmod 1$ be defined on the integers as congruence modulo $1$:
- $\forall x, y \in \Z: x \equiv y \pmod 1 \iff \exists k \in \Z: x - y = k$
That is, if their difference $x - y$ is an integer.
The equivalence classes of this equivalence relation is the set of integers:
- $\eqclass x 1 = \Z$
Congruence Modulo 2
Let $x \equiv y \pmod 2$ be defined on the integers as congruence modulo $2$:
- $\forall x, y \in \Z: x \equiv y \pmod 2 \iff \exists k \in \Z: x - y = 2 k$
That is, if their difference $x - y$ is an even integer.
The equivalence classes of this equivalence relation are of the form:
- $\eqclass x 2 = \set {\dotsc, x - 4, x - 2, x, x + 2, x + 4, \dotsc}$
which are:
\(\ds \eqclass 0 2\) | \(=\) | \(\ds \set {\dotsc, -4, -2, 0, 2, 4, \dotsc}\) | that is, the even integers | |||||||||||
\(\ds \eqclass 1 2\) | \(=\) | \(\ds \set {\dotsc, -3, -1, 1, 3, 5, \dotsc}\) | that is, the odd integers |
Each equivalence class has exactly one representative in the set $\set {0, 1}$.
Congruence Modulo 3
Let $x \mathrel \RR y$ be the equivalence relation defined on the integers as congruence modulo $3$:
- $x \mathrel \RR y \iff x \equiv y \pmod 3$
defined as:
- $\forall x, y \in \Z: x \equiv y \pmod 3 \iff \exists k \in \Z: x - y = 3 k$
That is, if their difference $x - y$ is a multiple of $3$.
The equivalence classes of this equivalence relation are of the form:
- $\eqclass x 3 = \set {\dotsc, x - 6, x - 3, x, x + 3, x + 6, \dotsc}$
which are:
\(\ds \eqclass 0 3\) | \(=\) | \(\ds \set {\dotsc, -6, -3, 0, 3, 6, \dotsc}\) | ||||||||||||
\(\ds \eqclass 1 3\) | \(=\) | \(\ds \set {\dotsc, -5, -2, 1, 4, 7, \dotsc}\) | ||||||||||||
\(\ds \eqclass 2 3\) | \(=\) | \(\ds \set {\dotsc, -4, -1, 2, 5, 8, \dotsc}\) |
Thus the partition of $\Z$ induced by $\RR$ is:
- $\Bbb S = \set {\eqclass 0 3, \eqclass 1 3, \eqclass 2 3}$
Each equivalence class has exactly one representative in the set $\set {0, 1, 2}$.
Further Specific Examples
Congruence Modulo $2$: $8 \equiv 2 \pmod 2$
- $8 \equiv 2 \pmod 2$
Congruence Modulo $2$: $8 \not \equiv 3 \pmod 2$
- $8 \not \equiv 3 \pmod 2$
Congruence Modulo $2$: $-3 \equiv -5 \pmod 2$
- $-3 \equiv -5 \pmod 2$
Congruence Modulo $3$: $12 \equiv 0 \pmod 3$
- $12 \equiv 0 \pmod 3$
Congruence Modulo $4$: $2 \equiv -6 \pmod 4$
- $2 \equiv -6 \pmod 4$
Congruence Modulo $4$: $3 \equiv 15 \pmod 4$
- $3 \equiv 15 \pmod 4$
Congruence Modulo $5$: $3 \equiv 18 \pmod 5$
- $3 \equiv 18 \pmod 5$
Congruence Modulo $5$: $13 \equiv 3 \pmod 5$
- $13 \equiv 3 \pmod 5$
Congruence Modulo $5$: $17 \equiv 12 \pmod 5$
- $17 \equiv 12 \pmod 5$
Congruence Modulo $6$: $-10 \equiv 8 \pmod 6$
- $-10 \equiv 8 \pmod 6$
Congruence Modulo $8$: $-2 \equiv 14 \pmod 8$
- $-2 \equiv 14 \pmod 8$
Notation
The relation $x$ is congruent to $y$ modulo $z$, usually denoted:
- $x \equiv y \pmod z$
is also frequently seen denoted as:
- $x \equiv y \ \paren {\mathop {\operatorname{modulo} } z}$
Some (usually older) sources render it as:
- $x \equiv y \ \paren {\mathop {\operatorname{mod.} } z}$
Also see
- Results about congruences can be found here.
Historical Note
The concept of congruence modulo an integer was first explored by Carl Friedrich Gauss.
He originated the notation $a \equiv b \pmod m$ in his work Disquisitiones Arithmeticae, published in $1801$.
Linguistic Note
The word modulo comes from the Latin for with modulus, that is, with measure.
Sources
- 1967: John D. Dixon: Problems in Group Theory ... (previous) ... (next): Introduction: Notation