Congruence by Product of Moduli

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b, m \in \Z$.

Let $a \equiv b \pmod m$ denote that $a$ is congruent to $b$ modulo $m$.


Then $\forall n \in \Z, n \ne 0$:

$a \equiv b \pmod m \iff a n \equiv b n \pmod {m n}$


Real Modulus

Let $a, b, z \in \R$.

Let $a \equiv b \pmod z$ denote that $a$ is congruent to $b$ modulo $z$.


Then $\forall y \in \R, y \ne 0$:

$a \equiv b \pmod z \iff y a \equiv y b \pmod {y z}$


Proof

Let $n \in \Z: n \ne 0$.

Then:

\(\ds a\) \(\equiv\) \(\ds b\) \(\ds \pmod m\)
\(\ds \leadstoandfrom \ \ \) \(\ds a \bmod m\) \(=\) \(\ds b \bmod m\) Definition of Congruence Modulo Integer
\(\ds \leadstoandfrom \ \ \) \(\ds n \paren {a \bmod n}\) \(=\) \(\ds n \paren {b \bmod n}\) Left hand implication valid only when $n \ne 0$
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {a n} \bmod \paren {m n}\) \(=\) \(\ds \paren {b n} \bmod \paren {m n}\) Product Distributes over Modulo Operation
\(\ds \leadstoandfrom \ \ \) \(\ds a n\) \(\equiv\) \(\ds b n\) \(\ds \pmod {m n}\) Definition of Congruence Modulo Integer

Hence the result.

Note the invalidity of the third step when $n = 0$.

$\blacksquare$


Sources