Congruence of Quotient/Examples/6 and 36 modulo 15
Jump to navigation
Jump to search
Examples of Use of Congruence of Quotient
\(\ds 6\) | \(\equiv\) | \(\ds 36\) | \(\ds \pmod {15}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 6 3\) | \(\equiv\) | \(\ds \dfrac {36} 3\) | \(\ds \pmod {15 / 3}\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2\) | \(\equiv\) | \(\ds 12\) | \(\ds \pmod 5\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 1\) | \(\equiv\) | \(\ds 6\) | \(\ds \pmod 5\) |
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): congruence modulo $n$ (C.F. Gauss, 1801)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): congruence modulo $n$ (C.F. Gauss, 1801)