Congruence of Quotient
Jump to navigation
Jump to search
Theorem
Let $a, b \in \Z$ and $n \in \N$.
Let $a$ be congruent to $b$ modulo $n$, that is $a \equiv b \pmod n$.
Let $d \in \Z: d > 0$ such that $d$ is a common divisor of $a, b$ and $n$.
Then:
- $\dfrac a d \equiv \dfrac b d \pmod {n / d}$
Proof 1
By definition of congruence modulo $n$:
- $a = b + k n$
Dividing through by $d$ (which you can do because $d$ divides all three terms), we get:
- $\dfrac a d = \dfrac b d + k \dfrac n d$
from which the result follows directly.
$\blacksquare$
Proof 2
From Congruence by Product of Moduli, we have that:
- $\dfrac a d \equiv \dfrac b d \pmod {n / d} \iff d \dfrac a d \equiv d \dfrac b d \pmod {n / d} \iff a \equiv b \pmod n$
$\blacksquare$
Examples
Example: $8 \equiv 18 \pmod {10}$
\(\ds 8\) | \(\equiv\) | \(\ds 18\) | \(\ds \pmod {10}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 8 2\) | \(\equiv\) | \(\ds \dfrac {18} 2\) | \(\ds \pmod {10 / 2}\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 4\) | \(\equiv\) | \(\ds 9\) | \(\ds \pmod 5\) |
Example: $6 \equiv 36 \pmod {15}$
\(\ds 6\) | \(\equiv\) | \(\ds 36\) | \(\ds \pmod {15}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 6 3\) | \(\equiv\) | \(\ds \dfrac {36} 3\) | \(\ds \pmod {15 / 3}\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2\) | \(\equiv\) | \(\ds 12\) | \(\ds \pmod 5\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 1\) | \(\equiv\) | \(\ds 6\) | \(\ds \pmod 5\) |
Warning
Note that in general it is not the case that:
\(\ds a\) | \(\equiv\) | \(\ds b\) | \(\ds \pmod m\) | |||||||||||
\(\ds c\) | \(\equiv\) | \(\ds d\) | \(\ds \pmod m\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac a c\) | \(\equiv\) | \(\ds \dfrac b d\) |
For example:
\(\ds 8\) | \(\equiv\) | \(\ds 18\) | \(\ds \pmod m\) | |||||||||||
\(\ds 27\) | \(\equiv\) | \(\ds 7\) | \(\ds \pmod m\) |
But we may not conclude that:
- $\dfrac 8 {27} \pmod {10} = \dfrac {18} 7 \pmod {10}$
We may not even conclude that:
- $\dfrac 8 2 \pmod {10} = \dfrac {18} 2 \pmod {10}$
because:
\(\ds \dfrac 8 2 \pmod {10}\) | \(\equiv\) | \(\ds 4 \pmod {10}\) | ||||||||||||
\(\ds \dfrac {18} 2 \pmod {10}\) | \(\equiv\) | \(\ds 9 \pmod {10}\) | ||||||||||||
\(\ds \) | \(\not \equiv\) | \(\ds 4 \pmod {10}\) |
But we do have:
\(\ds \dfrac 8 2 \pmod {10 / 2}\) | \(\equiv\) | \(\ds 4 \pmod 5\) | ||||||||||||
\(\ds \dfrac {18} 2 \pmod {10 / 2}\) | \(\equiv\) | \(\ds 9 \pmod 5\) | ||||||||||||
\(\ds \) | \(\equiv\) | \(\ds 4 \pmod 5\) |
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): congruence modulo $n$ (C.F. Gauss, 1801)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): congruence modulo $n$ (C.F. Gauss, 1801)