Congruence of Quotient/Warning
Jump to navigation
Jump to search
Congruence of Quotient: Warning
Note that in general it is not the case that:
\(\ds a\) | \(\equiv\) | \(\ds b\) | \(\ds \pmod m\) | |||||||||||
\(\ds c\) | \(\equiv\) | \(\ds d\) | \(\ds \pmod m\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac a c\) | \(\equiv\) | \(\ds \dfrac b d\) |
For example:
\(\ds 8\) | \(\equiv\) | \(\ds 18\) | \(\ds \pmod m\) | |||||||||||
\(\ds 27\) | \(\equiv\) | \(\ds 7\) | \(\ds \pmod m\) |
But we may not conclude that:
- $\dfrac 8 {27} \pmod {10} = \dfrac {18} 7 \pmod {10}$
We may not even conclude that:
- $\dfrac 8 2 \pmod {10} = \dfrac {18} 2 \pmod {10}$
because:
\(\ds \dfrac 8 2 \pmod {10}\) | \(\equiv\) | \(\ds 4 \pmod {10}\) | ||||||||||||
\(\ds \dfrac {18} 2 \pmod {10}\) | \(\equiv\) | \(\ds 9 \pmod {10}\) | ||||||||||||
\(\ds \) | \(\not \equiv\) | \(\ds 4 \pmod {10}\) |
But we do have:
\(\ds \dfrac 8 2 \pmod {10 / 2}\) | \(\equiv\) | \(\ds 4 \pmod 5\) | ||||||||||||
\(\ds \dfrac {18} 2 \pmod {10 / 2}\) | \(\equiv\) | \(\ds 9 \pmod 5\) | ||||||||||||
\(\ds \) | \(\equiv\) | \(\ds 4 \pmod 5\) |
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): congruence modulo $n$ (C.F. Gauss, 1801)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): congruence modulo $n$ (C.F. Gauss, 1801)