Conjugate Transpose is Involution

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf A$ be a complex-valued matrix.

Let $\mathbf A^*$ denote the Hermitian conjugate of $\mathbf A$.


Then the operation of Hermitian conjugate is an involution:

$\paren {\mathbf A^*}^* = \mathbf A$


Proof

\(\ds \sqbrk {\paren {\mathbf A^*}^* }_{i j}\) \(=\) \(\ds \overline {\sqbrk {\mathbf A^*}_{j i} }\) Definition of Hermitian Conjugate
\(\ds \) \(=\) \(\ds \overline {\paren {\overline {\sqbrk {\mathbf A}_{i j} } } }\) Definition of Hermitian Conjugate
\(\ds \) \(=\) \(\ds \sqbrk {\mathbf A}_{i j}\) Complex Conjugation is Involution

So:

$\paren {\mathbf A^*}^* = \mathbf A$

$\blacksquare$