Cosets in Abelian Group
Jump to navigation
Jump to search
Theorem
Let $G$ be an abelian group.
Then every right coset modulo $H$ is a left coset modulo $H$.
That is:
- $\forall x \in G: x H = H x$
In an abelian group, therefore, we can talk about congruence modulo $H$ and not worry about whether it is left or right.
Proof
\(\ds \) | \(\) | \(\ds \forall x, y \in G: x^{-1} y = y x^{-1}\) | ||||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \paren {x \equiv^l y \pmod H \iff y \equiv^r x \pmod H}\) | Definition of Congruence Modulo Subgroup | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \paren {x \equiv^l y \pmod H \iff x \equiv^r y \pmod H}\) | Congruence Modulo Subgroup is Equivalence Relation, therefore Symmetric |
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 6.1$. The quotient sets of a subgroup: Example $113$
- 1966: Richard A. Dean: Elements of Abstract Algebra ... (previous) ... (next): $\S 1.9$
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{II}$: Groups: Subgroups
- 1970: B. Hartley and T.O. Hawkes: Rings, Modules and Linear Algebra ... (previous) ... (next): $\S 2.2$: Homomorphisms
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: Subgroups and Cosets: $\S 37 \gamma$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 42$. Another approach to cosets