Cosine in terms of Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number such that $\cos x \ne 0$.

Then:

\(\ds \cos x\) \(=\) \(\ds +\frac 1 {\sqrt {1 + \tan^2 x} }\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(=\) \(\ds -\frac 1 {\sqrt {1 + \tan^2 x} }\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$

where $\sin$ denotes the real sine function and $\tan$ denotes the real tangent function.


Proof

\(\ds \sec^2 x - \tan^2 x\) \(=\) \(\ds 1\) Difference of Squares of Secant and Tangent
\(\ds \leadsto \ \ \) \(\ds \sec^2 x\) \(=\) \(\ds 1 + \tan ^2 x\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 {\cos^2 x}\) \(=\) \(\ds 1 + \tan^2 x\) Secant is Reciprocal of Cosine
\(\ds \leadsto \ \ \) \(\ds \cos^2 x\) \(=\) \(\ds \frac 1 {1 + \tan^2 x}\)
\(\ds \leadsto \ \ \) \(\ds \cos x\) \(=\) \(\ds \pm \frac 1 {\sqrt {1 + \tan^2 x} }\)


Then from Sign of Cosine:

\(\ds \cos x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$


When $\cos x = 0$, $\tan x$ is undefined.

$\blacksquare$


Also see