Sign of Cosine

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number.

Then:

\(\ds \cos x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$

where $\cos$ is the real cosine function.


Proof

Proof by induction:

Base case

For $n = 0$, it follows from Sine and Cosine are Periodic on Reals/Corollary.


Induction Hypothesis

This is our induction hypothesis:

\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(<\) \(\ds 0\) for $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$

Now we need to show true for $n=k+1$:

\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n + \dfrac 3 2} \pi < x < \paren {2 n + \dfrac 5 2} \pi$
\(\ds \cos x\) \(<\) \(\ds 0\) for $\paren {2 n + \dfrac 5 2} \pi < x < \paren {2 n + \dfrac 7 2} \pi$


Induction Step

This is our induction step:

\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n + \dfrac 3 2} \pi < x + 2 \pi < \paren {2 n + \dfrac 5 2} \pi$
\(\ds \map \cos {x + 2 \pi}\) \(>\) \(\ds 0\) for $\paren {2 n + \dfrac 3 2} \pi < x + 2 \pi < \paren {2 n + \dfrac 5 2} \pi$ \(\quad\) Sine and Cosine are Periodic on Reals
\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n + \dfrac 3 2} \pi < x < \paren {2 n + \dfrac 5 2} \pi$ \(\quad\) Replacing $x + 2 \pi$ by $x$

Also:

\(\ds \cos x\) \(<\) \(\ds 0\) for $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$
\(\ds \cos x\) \(<\) \(\ds 0\) for $\paren {2 n + \dfrac 5 2} \pi < x + 2 \pi < \paren {2 n + \dfrac 7 2} \pi$
\(\ds \map \cos {x + 2 \pi}\) \(<\) \(\ds 0\) for $\paren {2 n + \dfrac 5 2} \pi < x + 2 \pi < \paren {2 n + \dfrac 7 2} \pi$ \(\quad\) Sine and Cosine are Periodic on Reals
\(\ds \cos x\) \(<\) \(\ds 0\) for $\paren {2 n + \dfrac 5 2} \pi < x < \paren {2 n + \dfrac 7 2} \pi$ \(\quad\) Replacing $x + 2 \pi$ by $x$

The result follows by induction.


For negative $n$:

Induction Hypothesis

This is our induction hypothesis:

\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(<\) \(\ds 0\) for $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$

Now we need to show true for $n=k-1$:

\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 5 2} \pi < x < \paren {2 n - \dfrac 3 2} \pi$
\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 3 2} \pi < x < \paren {2 n - \dfrac 1 2} \pi$


Induction Step

This is our induction step:

\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \map \cos {x + 2 \pi}\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 1 2} \pi < x + 2 \pi < \paren {2 n + \dfrac 1 2} \pi$ \(\quad\) replacing $x$ by $x + 2 \pi$
\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 1 2} \pi < x + 2 \pi < \paren {2 n + \dfrac 1 2} \pi$ \(\quad\) Sine and Cosine are Periodic on Reals
\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 5 2} \pi < x < \paren {2 n - \dfrac 3 2} \pi$

Also:

\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$
\(\ds \map \cos {x + 2 \pi}\) \(>\) \(\ds 0\) for $\paren {2 n + \dfrac 1 2} \pi < x + 2 \pi < \paren {2 n + \dfrac 3 2} \pi$ \(\quad\) replacing $x$ by $x + 2 \pi$
\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n + \dfrac 1 2} \pi < x + 2 \pi < \paren {2 n + \dfrac 3 2} \pi$ \(\quad\) Sine and Cosine are Periodic on Reals
\(\ds \cos x\) \(>\) \(\ds 0\) for $\paren {2 n - \dfrac 3 2} \pi < x < \paren {2 n - \dfrac 1 2} \pi$

The result follows by induction.

$\blacksquare$


Also see