Cosine of 2 is Strictly Negative
Jump to navigation
Jump to search
Theorem
- $\cos 2 < 0$
where $\cos$ denotes the cosine.
Proof
Recall the definition of the cosine:
The real cosine function $\cos: \R \to \R$ is defined as:
\(\ds \cos x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n!} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \frac {x^2} {2!} + \frac {x^4} {4!} - \frac {x^6} {6!} + \cdots + \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!} + \cdots\) |
Thus:
\(\ds \cos 2\) | \(=\) | \(\ds 1 - \paren {\frac {2^2} {2!} - \frac {2^4} {4!} } - \paren {\frac {2^6} {6!} - \frac {2^8} {8!} } - \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \sum_{n \mathop = 1}^\infty A_n\) |
where:
\(\ds A_n\) | \(:=\) | \(\ds \dfrac {2^{4 n - 2} } {\paren {4 n - 2}!} - \dfrac {2^{4 n} } {\paren {4 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {4 n \paren {4n - 1} 2^{4 n - 2} - 2^{4 n} } {\paren {4 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {n \paren {4n - 2} 2^{4 n} } {\paren {4 n}!}\) | ||||||||||||
\(\ds \) | \(\ge\) | \(\ds 0\) | for all $n \ge 1$ |
Thus:
\(\ds \cos 2\) | \(\le\) | \(\ds 1 - A_1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \paren {\frac {2^2} {2!} - \frac {2^4} {4!} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds - \dfrac 1 3\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds 0\) |
$\blacksquare$