Cosine of Difference/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \cos {a - b} = \cos a \cos b + \sin a \sin b$


Proof

Cosine-of-Difference.png

Consider two radii $OP$ and $OQ$ of a unit circle whose center is at the origin of a Cartesian plane.

Let:

\(\ds \angle xOP\) \(=\) \(\ds B\)
\(\ds \angle xOQ\) \(=\) \(\ds A\)

Then the coordinates of $P$ and $Q$ are given by:

\(\ds P\) \(=\) \(\ds \tuple {\cos B, \sin B}\)
\(\ds Q\) \(=\) \(\ds \tuple {\cos A, \sin A}\)

Hence:

\(\ds PQ^2\) \(=\) \(\ds \paren {\cos B - \cos A}^2 + \paren {\sin B - \sin A}^2\)
\(\ds \) \(=\) \(\ds \cos^2 B - 2 \cos A \cos B + \cos^2 A + \sin^2 B - 2 \sin A \sin B + \sin^2 A\) multiplying out
\(\ds \) \(=\) \(\ds 2 - 2 \cos A \cos B - 2 \sin A \sin B\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds 1 + 1 - 2 \map \cos {A - B}\) Law of Cosines, as $\angle POQ = A - B$
\(\ds \leadsto \ \ \) \(\ds \map \cos {A - B}\) \(=\) \(\ds \cos A \cos B + \sin A \sin B\) simplifying


$\blacksquare$


Sources