Cosine to Power of Even Integer/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \cos^{2 n} \theta\) \(=\) \(\ds \frac 1 {2^{2 n} } \binom {2 n} n + \frac 1 {2^{2 n - 1} } \paren {\cos 2 n \theta + \binom {2 n} 1 \map \cos {2 n - 2} \theta + \cdots + \binom {2 n} {n - 1} \cos 2 \theta}\)
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \binom {2 n} n + \frac 1 {2^{2 n - 1} } \sum_{k \mathop = 0}^{n - 1} \binom {2 n} k \map \cos {2 n - 2 k} \theta\)


Proof

\(\ds \cos^{2 n} \theta\) \(=\) \(\ds \paren {\frac {e^{i \theta} + e^{-i \theta} } 2}^{2 n}\) Euler's Cosine Identity
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \paren {e^{i \theta} + e^{-i \theta} }^{2 n}\) Power of Product
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \sum^{2 n}_{k \mathop = 0} \binom{2 n} k e^{k i \theta} e^{-\paren {2 n - k} i \theta}\) Binomial Theorem
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \sum^{2 n}_{k \mathop = 0} \binom{2 n} k e^{-\paren {2 n - 2 k} i \theta}\) Exponential of Sum
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \paren {\sum^{n \mathop - 1}_{k \mathop = 0} \binom {2 n} k e^{-\paren {2 n - 2 k} i \theta} + \binom {2 n} n e^{\paren {2 n - 2 n} i \theta} + \sum^{2 n}_{k \mathop = n + 1} \binom {2 n} k e^{-\paren {2 n - 2 k} i \theta} }\) partitioning the sum
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \binom {2 n} n + \frac 1 {2^{2 n} } \paren {\sum^{n - 1}_{k \mathop = 0} \binom {2 n} k e^{-\paren {2 n - 2 k} i \theta} + \sum^{2 n}_{k \mathop = n + 1} \binom {2 n} k e^{-\paren {2 n - 2 k} i \theta} }\) Exponential of Zero
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \binom {2 n} n + \frac 1 {2^{2 n} } \paren {\sum^{n - 1}_{k \mathop = 0} \binom {2 n} k e^{-\paren {2 n - 2 k} i \theta} + \sum^{n - 1}_{k \mathop = 0} \binom {2 n} {2 n - k} e^{\paren {2 \paren {2 n - k} - 2 n} i \theta} }\) $k \mapsto 2 n - k$
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \binom {2 n} n + \frac 1 {2^{2 n} } \paren {\sum^{n - 1}_{k \mathop = 0} \binom {2 n} k e^{-\paren {2 n - 2 k} i \theta} + \sum^{n - 1}_{k \mathop = 0} \binom {2 n} k e^{\paren {2 n - 2 k} i \theta} }\) Symmetry Rule for Binomial Coefficients
\(\ds \) \(=\) \(\ds \frac 1 {2^{2 n} } \binom {2 n} n + \frac 1 {2^{2 n - 1} } \sum^{n - 1}_{k \mathop = 0} \binom {2 n} k \map \cos {2 n - 2 k} \theta\) Euler's Cosine Identity

$\blacksquare$