Cotangent of 45 Degrees
Jump to navigation
Jump to search
Theorem
- $\cot 45 \degrees = \cot \dfrac \pi 4 = 1$
where $\cot$ denotes cotangent.
Proof
\(\ds \cot 45 \degrees\) | \(=\) | \(\ds \frac {\cos 45 \degrees} {\sin 45 \degrees}\) | Cotangent is Cosine divided by Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\frac {\sqrt 2} 2} {\frac {\sqrt 2} 2}\) | Cosine of $45 \degrees$ and Sine of $45 \degrees$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | dividing top and bottom by $\dfrac {\sqrt 2} 2$ |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: Exact Values for Trigonometric Functions of Various Angles
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): trigonometric function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): trigonometric function