Cosine of 45 Degrees
Jump to navigation
Jump to search
Theorem
- $\cos 45 \degrees = \cos \dfrac \pi 4 = \dfrac {\sqrt 2} 2$
where $\cos$ denotes the cosine.
Proof
\(\ds \paren {\cos 45 \degrees}^2\) | \(=\) | \(\ds 1 - \paren {\sin 45 \degrees}^2\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \paren {\frac {\sqrt 2} 2}^2\) | Sine of $45 \degrees$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cos 45 \degrees\) | \(=\) | \(\ds \sqrt {\frac 1 2}\) | positive because $\cos 45 \degrees$ is in Quadrant I | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt 2} 2\) |
$\blacksquare$
Also presented as
Some sources present the cosine of $45 \degrees$ as:
- $\cos 45 \degrees = \dfrac 1 {\sqrt 2}$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text V$. Trigonometry: Special angles
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: Exact Values for Trigonometric Functions of Various Angles
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): trigonometric function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): trigonometric function
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Trigonometric values for some special angles
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $14$: Trigonometric formulae: Trigonometric values for some special angles